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Oxidation of polypyridyl Ru11 and Os11 aqua complexes leads 
tostableoxo complexes by sequential 1H+/1 e~ transfers (eq 1).' 

-H + / e" -H+/ff* 
[Mn(tpy)(bpy)(H20)]2+ - [Mm(tpy)(bpy)(OH)]2+ -» 

+H+/e- +H+/cr 

[MIV(tpy)(bpy)(0)]2+ (1) 

M = Ru, Os; tpy = 2,2':6',2"-terpyridine, bpy = 2,2'-bipyridine 

Similarly, Os(tpy)Cl2NH3 undergoes a chemically reversible 
3H+/4e_ transfer to give the corresponding nitrido through an 
OsIV intermediate (eq 2).2 Oxidation of other Ru and Os ammine 

-3H+/4e-

Os"(tpy)Cl2NH3 *- [OsVI(tpy)Cl2(N)]+ (2) 
+3H+/4e-

complexes by two electrons is followed by rapid, complex 
disproportionation pathways and the appearance of the M11 

nitrosyl as the exclusive product (eqs 3-5).3 We report here that 

[M11CtPy)(OPy)(NH3)P ^ [Mni(tpy)(bpy)(NH3)]3+ (3) 
+e-

[Mni(tpy)(bpy)(NH3)]
3+ -* [MIV(tpy)(bpy)(NH)]2+ (4) 

3[MIV(tpy)(bpy)(NH)]2+ + H3O+ -

2[Mn(tpy)(bpy)(NH3)]2+ + [Mn(tpy)(bpy)(NO)]3+ (5) 

the reactive Os™ imido intermediate can be trapped in the presence 
of secondary amines to give a novel series of stable OsIV and Osv 

hydrazido(2-) complexes. In addition to being the first examples 
of terminal hydrazido coordination to osmium, these complexes 
exhibit electrochemical behavior which may be relevant to the 
N-N bond cleavage step in the functioning of nitrogenase enzymes. 

Electrochemical measurements reveal that eq 3 (M = Os) is 
a one-electron process which is reversible and pH-independent 
(Ei/2 = +0.41 V)4 over the range 0 < pH < 4.5, while eq 4 is 
strongly pH-dependent and irreversible.3 At pH ^ 7, oxidation 
of Os111 to OsIV occurs at lower potentials than oxidation of Os11 
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to Os111. In the presence of a large excess of a secondary amine 
(0.5 M NHR2 buffered to pH 7.0 with NaH2PO4), exhaustive 
oxidation of a solution 1.75 mM in [Os(tpy)(bpy)(NH3)](PF«)2 
(1) resulted in the transformation described by eq 6.5 Chrono-

[Os t̂pyXbpyHNHa)]2* + NH2R2
+ - — ^ - [Osv(tpy)(bpy)(NNR2)]

3+ (6) 

HNR2 = HNEt2(a),H^,NC^7° (b) 

coulometry established the electron count to be 4.6-5.0 electrons. 
From the electrolyzed solutions, the Osv products (3a and 3b) 
were isolated.6-7 Exhaustive reduction of 3 at 0 V occurred with 
«= 1.0 ± 0.1 and gave the corresponding OsIV products (eq 7). 

[Osv(tpy)(bpy)(NNR2)]3+- [OsIV(tpy)(bpy)(NNR2)]
2+ (7) 

3 2 
Once isolated,7,8 2 was oxidized to 3 in aqueous and nonaqueous 
electrolytes with n = 1.0 ± 0.1 (vide infra). Crystals suitable for 
X-ray diffraction were grown by vapor diffusion of diethyl ether 
into saturated acetonitrile solutions of 2. The structure of 2a, 
determined by X-ray crystallography,' is shown in Figure 1. 

Multiple bonding between OsIV and the hydrazido ligand is 
revealed by the Os-Na distances of 1.89(1) A in 2a and 1.85(2) 
A in 2b. The Os-N(bpy) bond lengths trans to the hydrazido 
are short (2.05( 1) A for 2a; 1.98(2) A for 2b) compared to those 
cis (2.14(1) A for 2a; 2.11(1) A for 2b. The complexes are 
diamagnetic,10 and the Os-Nn-N^ bond angle of 137° (in 2a, 2b) 
suggests that two pairs of electrons are donated to the metal. This 
value is close to the Os-N-P angle of trans- [Os(tpy)Cl2NPPh3]-
(PF6), in which the phosphoraminato ligand is a four-electron 
donor.11 Moreover, the NNCC units of the hydrazido ligands 
are planar, suggesting a TT interaction between nitrogens (Na-N,j 
= 1.25(2) A in 2a; 1.40(2) A in 2b), with the IT* component of 
this interaction donating electrons to OsIv. 

Cyclic voltammetry of compounds 2 and 3 indicates that the 
Os(V/IV) couple is reversible in acetonitrile and in aqueous 
solutions, where the wave is pH-independent.12 Further 
irreversible oxidation (E^ = +1.50 V for 2 in CH3CN) gives a 
new product, which is currently under investigation. 

Electrochemical properties of 2 in aqueous solution are pH-
and scan rate-dependent. The data represented in Figures 2 and 
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Figure 1. The structure of the cation in [Os(tpy)(bpy)NNEt2](PF«)2 
(2a) determined by X-ray crystallography. 

Figure 2. Cyclic voltammogram of 2a at pH = 5.0 (2.5 mM in CH3-
COONa buffer) showing both reduction Waves, I and II, and product 
Waves, B and C. The working electrode was a 2-mm glassy carbon disk, 
and the reference electrode was the SSCE. 
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Figure 3. Background-subtracted cyclic voltammograms of 2a at pH = 
5.0. The product ifjr1/2 is plotted on the y-axis, where if is the faradaic 
current and v is the scan rate. Units are ftA's'/^mV-1/2. Each sweep 
was initiated cathodically from 0 V. 

Scheme 1. Summary of Electrochemical Properties of 
[Os(tpy)(bpy)NNEt2](PF6)2 in Aqueous Solution" 

[IbOsNNH2J
2+' 

+2H+/2e- (Wave I) 

-2H+/2e- (Wave A) 
UbOsNH2NEt2J

2+ 

+3H+/2e- (Wave II) 
-3H+/2e-

[IbOsNNa2I3+ 

" b = 2,2'-bipyridine. 

H2NEl2
+ + [tbOsNH3]2+ 

t = 2,2':6',2"-terpyridine. The dashed arrow 
indicates that the reaction is reversible only in the presence of a large 
excess of amine. Wave designations refer to Figures 2 and 3. 

3 were taken at pH 5.0, where all of the electrochemical events 
identified in Scheme 1 are resolvable. The initial reduction (Wave 
I) appears to involve the transfer of two electrons and two protons, 

generating an Os" dialkylhydrazine complex. Reduction of this 
species by two more electrons (Wave II, Figure 2) yields the 
ammine complex and free dialkylamine. The Os" dialkyl­
hydrazine complex can be reoxidized to give the starting complex 
(Wave A, Figure 3) at sufficiently high scan rates. Both £,» for 
wave I and E^ for wave A decrease as the pH is raised, consistent 
with Scheme 1. Below pH 6, Wave A can be observed only at 
higher scan rates, because the hydrazine complex decomposes to 
give 1. We have not yet determined whether this process involves 
disproportionation (eq 8), or occurs intramolecularly (eq 9), as 
observed for MCp*Me3()j

2-NH2NH2)
+ (M = Mo, W; Cp* = 

CsMes).13 In the latter case, the imido complex once formed would 

20s(tpy)(bpy)NH2NR2
2+ + H + - Os(tpy)(bpy)NNR2

2+ + 

Os(tpy)(bpy)NH3
2+ + H2NR2

+ (8) 

[Os"(tpy)(bpy)NH2NR2]2+ + H + -

[OsIV(tpy)(bpy)NH]2+ + H2NR2
+ (9) 

be immediately reduced to 1 at the electrode. Decomposition of 
the hydrazine complex to 1 occurs very slowly at pH 9, but is 
rapid below pH 6. This is seen at the slower scan rates of Figure 
3, where a reverse scan following reduction at Wave I shows the 
two-wave pattern for the reversible Os111/" couple (Wave B) and 
the irreversible Os™/"1 couple (Wave C) of 1. At pH < 2, 
disproportionation becomes quite rapid, and a single, four-electron 
reductive process is observed (eq 10) at the expense of Wave II. 

The products of bulk reduction past the first wave also depend 
on pH. In neutral and basic solutions, reduction occurs with n 
« 3, giving 1 and an additional product, which is probably the 
hydrazine complex. At pH = 0.5 the reduction occurs with n = 
4.0 ± 0.2 and gives 1 quantitatively (eq 10). 

+5H+/4e-
[Os(tpy)(bpy)(NNR2)]2+ -

[Os(tpy)(bpy)(NH3)]2++ NH2R2
+ (10) 

The electron-transfer reactivity of these complexes may be 
relevant to the mechanisms of N 2 fixation. It demonstrates two 
distinct pathways for reduction of coordinated hydrazines to 
amines. The Os hydrazido complexes share important features 
with previous nitrogenase models based on molybdenum and 
tungsten13-14 but differ in that (1) they are relatively electron 
deficient; (2) they are coordinatively rigid and saturated, with 
coordination number 6 for all oxidation states; and (3) the d4 

configuration forces a bent M-N0-Np structure instead of the 
more common linear geometry. In addition to guiding the 
reductive chemistry, these factors account for the hydrolytic 
stability of the complexes and the net chemical reversibility of 
N - N formation and cleavage: features which stand in contrast 
to other models. 
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